Abstract
Hyaluronic acid (HA) has garnered much attention in the development of novel hydrogels. Hydrogels, as drug delivery systems, are very important in tissue engineering applications. In this study, we developed a novel HA nanogel containing a cholesterol and maleimide derivative (HAMICH) and its corresponding crosslinked hydrogel (HAMICH gel) to encapsulate drugs for their subsequent release. HAMICH gels self-assemble into nanoparticles via hydrophobic interactions. Dynamic light scattering analysis of HAMICH revealed that the particle size tended to decrease with increasing degree of cholesterol moiety substitution. The HAMICH gel was prepared through a Michael addition reaction between HAMICH and pentaerythritol tetra(mercaptoethyl)polyoxyethylene. The concentration of HAMICH needed for gelation depends on the degree of cholesterol moiety substitution; the higher the substitution degree is, the greater the concentration of HAMICH needed. The HAMICH gel exhibited less swelling and a smaller volume change than the gel with an unmodified cholesterol moiety in phosphate-buffered saline (pH 7.4). The HAMICH gel displayed enhanced peptide and protein trapping abilities without hydrogel swelling, suggesting its potential as a HA hydrogel for biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.