Abstract

Raising the level of biological realism by utilizing the timing of individual spikes, spiking neural networks (SNNs) are considered to be the third generation of artificial neural networks. In this work, a novel variable-structure-systems based approach for online learning of SNN is developed and tested on the identification and speed control of a real-time servo system. In this approach, neurocontroller parameters are used to define a time-varying sliding surface to lead the control error signal to zero. To prove the convergence property of the developed algorithm, the Lyapunov stability method is utilized. The results of the real-time experiments on the laboratory servo system for a number of different load conditions including nonlinear and time-varying ones indicate that the control structure exhibits a highly robust behavior against disturbances and sudden changes in the command signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call