Abstract

Every physical actuator is subject to saturation. It has been well recognized that, when the actuator saturates, the performance of the closed-loop system (designed without considering actuator saturation) may seriously deteriorate. In extreme cases, the system stability may even be lost. This paper proposes an avoid saturation strategy for the torque controller of a wind turbine benchmark model. The simulation results show that the proposed strategy has a clear added value with respect to the baseline controller (well- accepted industrial controller) in the presence of faults. Another advantage of the contributed method is that conservative bounds for the actuator torque can be fixed in order to extend the service life of the wind turbine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.