Abstract

Diabetes mellitus type 1 occurs when β‐cells in the pancreas are destroyed by the immune system. As a result, the pancreas cannot produce adequate insulin, and the glucose enters the cells to produce energy. To elevate the glycaemic concentration, sufficient amount of insulin should be taken orally or injected into the human body. Artificial pancreas is a device that automatically regulates the level of body insulin by injecting the requisite amount of insulin into the human body. A finite‐time robust feedback controller based on the Extended Bergman Minimal Model is designed here. The controller is designed utilizing the backstepping approach and is robust against the unknown external disturbance and parametric uncertainties. The stability of the system is proved using the Lyapunov theorem. The controller is exponentially stable and hence provides the finite‐time convergence of the blood glucose concentration to its desired magnitude. The effectiveness of the proposed control method is shown through simulation in MATLAB/Simulink environment via comparisons with previous studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call