Abstract

A variable structure controller is designed for a high-speed underwater vehicle on a catastrophic course using a mathematical model. This sudden change at the moment when a high-speed underwater vehicle launches out of the water seriously affects the stability and the control accuracy of the high-speed underwater vehicle. The nonlinear system is linearised via input-output feedback linearisation using differential geometry theory. The attitude tracking controller is designed for a closed loop using the exponentially approaching rule of variable structure theory. The simulation results show that the control system can be applied to a catastrophic course in a high-speed underwater vehicle launched underwater and out of the water. The results also show great robustness against all admissible uncertainties for system parameter perturbation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call