Abstract

In this brief, we propose a variable structure based nonlinear missile guidance/autopilot system with highly maneuverable actuators, mainly consisting of thrust vector control and divert control system, for the task of intercepting of a theater ballistic missile. The aim of the present work is to achieve bounded target interception under the mentioned 5 degree-of-freedom (DOF) control such that the distance between the missile and the target will enter the range of triggering the missile's explosion. First, a 3-DOF sliding-mode guidance law of the missile considering external disturbances and zero-effort-miss (ZEM) is designed to minimize the distance between the center of the missile and that of the target. Next, a quaternion-based sliding-mode attitude controller is developed to track the attitude command while coping with variation of missile's inertia and uncertain aerodynamic force/wind gusts. The stability of the overall system and ZEM-phase convergence are analyzed thoroughly via Lyapunov stability theory. Extensive simulation results are obtained to validate the effectiveness of the proposed integrated guidance/autopilot system by use of the 5-DOF inputs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call