Abstract

Panovsky and Richardson [A family of implicit Chebyshev methods for the numerical integration of second-order differential equations, J. Comput. Appl. Math. 23 (1988) 35–51] presented a method based on Chebyshev approximations for numerically solving the problem y ″ = f ( x , y ) , being the steplength constant. Coleman and Booth [Analysis of a Family of Chebyshev Methods for y ″ = f ( x , y ) , J. Comput. Appl. Math. 44 (1992) 95–114] made an analysis of the above method and suggested the convenience to design a variable steplength implementation. As far as we know this goal has not been achieved until now. Later on we extended the above method (this journal, 2003), and obtained a scheme for numerically solving the equation y ″ - 2 gy ′ + ( g 2 + w 2 ) = f ( x , y ) . The question of how to extend these formulas to variable stepsize procedures is the primary topic of this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.