Abstract
Over the last decade, the evolution of block backward differentiation formulas (BBDF) has involved the modifications of the formulation techniques in order to solve ordinary differential equations (ODEs). Better still, if the modified methods have the ability of computing solutions efficiently with any prescribed parameter. Therefore, this research focuses on the derivation of 2-point variable step block backward differentiation formulas (VSBBDF) that possesses independent parameter in the coefficients. In this formula, each block contains two points, which compute two approximate solutions simultaneously. Varying the value of parameter will lead to multiple choice of solutions with different level of accuracy. Since the method is derived using variable step size scheme, the strategy in controlling the step size ratio is also discussed. The capability of the derived method is demonstrated by solving initial value problem of stiff ODEs. A comparison of its performance with several existing methods is made to shed light on the superiority and shortcomings of VSBBDF with respect to independent parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Physics: Conference Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.