Abstract

In this paper, we present a novel signal sorting method aimed at reducing the impact of interference and noise while achieving blind detection and accurate sorting of a variable-speed frequency-hopping communication system. To achieve this, we combine spectrogram analysis with an innovative sorting approach. First, we generate the spectrogram of the received signal, and then employ a morphology filter to effectively eliminate noise and sweep frequency interference from the spectrogram. Subsequently, we identify and mark connected domains in the spectrogram, from which we extract the duration data to create a dataset specifically for separating fixed-frequency interference. Furthermore, we propose a specialized time alignment algorithm designed to accommodate the unique characteristics of variable-speed frequency-hopping signals, enabling precise sorting of variable-speed frequency-hopping signals. Through rigorous comparative evaluations against existing algorithms, we demonstrate that our proposed approach provides superior accuracy by offering a clearer representation of the time–frequency situation of the received signals. The proposed method provides a high correct sorting probability which is equal to 0.8 when signal-to-noise ratio is 0 dB and reaches 1 when signal-to-noise ratio reaches over 12 dB. In comparison, the correct sorting probability of the comparison algorithm is far inferior to the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call