Abstract

In marine seismic data acquisition, varying the source depth along a sail line gives diversity in sequential shot gather frequency spectra. Undesired alterations of the frequency spectra are created by the source ghost and by air-gun bubble oscillations. By deliberately varying the source depth along a sail line, it is possible to obtain a seismic data set that will have energy more evenly distributed within the main frequency band of the source output. This is obtained when data acquired with different source depths are stacked in imaging. We formulated a simple inverse problem that seeks to find the optimal distribution of source depths over a sequential series of shots that shape the amplitude spectrum of the final image into a desired shape. We assumed that the data are receiver-side deghosted, that designature could be applied to each shot gather, and that the shot gathers could be redatumed to a common datum prior to imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.