Abstract
Abstract A crucial problem in building a multiple regression model is the selection of predictors to include. The main thrust of this article is to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure entails embedding the regression setup in a hierarchical normal mixture model where latent variables are used to identify subset choices. In this framework the promising subsets of predictors can be identified as those with higher posterior probability. The computational burden is then alleviated by using the Gibbs sampler to indirectly sample from this multinomial posterior distribution on the set of possible subset choices. Those subsets with higher probability—the promising ones—can then be identified by their more frequent appearance in the Gibbs sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.