Abstract

The seamless-L0 (SELO) penalty is a smooth function on [0,∞) that very closely resembles the L0 penalty, which has been demonstrated theoretically and practically to be effective in nonconvex penalization for variable selection. In this paper, we first generalize SELO to a class of penalties retaining good features of SELO, and then propose variable selection and estimation in linear models using the proposed generalized SELO (GSELO) penalized least squares (PLS) approach. We show that the GSELO-PLS procedure possesses the oracle property and consistently selects the true model under some regularity conditions in the presence of a diverging number of variables. The entire path of GSELO-PLS estimates can be efficiently computed through a smoothing quasi-Newton (SQN) method. A modified BIC coupled with a continuation strategy is developed to select the optimal tuning parameter. Simulation studies and analysis of a clinical data are carried out to evaluate the finite sample performance of the proposed method. In addition, numerical experiments involving simulation studies and analysis of a microarray data are also conducted for GSELO-PLS in the high-dimensional settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call