Abstract

AbstractHere, we combine angular search algorithm and variance inflation factor (ASA‐VIF) with support vector regression (SVR) (ASA‐VIF‐SVR) to estimate total acid number (TAN), basic nitrogen content (BNC), and sulfur content (SC) in Brazilian crude oils. To prevent the interference of outliers, we further developed a strategy for outlier identification and applied it to nonlinear models based on RMSE (root mean square error). ASA‐VIF‐SVR was applied to near‐ and mid‐infrared spectroscopy (NIR and MIR) and hydrogen nuclear magnetic resonance (1H NMR) spectroscopy data available in a range of 93–194 samples. The models were evaluated for accuracy (root mean square error of calibration [RMSEC] and root mean square error of prediction [RMSEP]) and linearity (coefficient of determination, R2). The removal of outliers increased accuracy and linearity of our models. The ASA‐VIF model for TAN, BNC, and SC selected 0.37%, 0.93%, and 0.30% of variables from full NIR spectra; 0.21%, 0.27%, and 0.21% from full MIR; and 0.20%, 0.42%, and 0.15% from full 1H NMR. In most cases, the best results were obtained with variable selection compared with the full dataset. Also, 1H NMR generated more accurate and linear models with RMSEP and R2p of 0.0071 wt% and 0.86 for BNC and 0.0623 wt% and 0.79 for SC. TAN showed a better MIR result with RMSEP of 0.1426 mg KOH g–1 and R2p of 0.47. The most important region for 1H NMR and MIR was the one with the largest quantity of unpaired electrons (aromatic region).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.