Abstract
A jack-knife based method for variable selection in partial least squares regression is presented. The method is based on significance tests of model parameters, in this paper applied to regression coefficients. The method is tested on a near infrared (NIR) spectral data set recorded on beer samples, correlated to extract concentration and compared to other methods with known merit. The results show that the jack-knife based variable selection performs as well or better than other variable selection methods do. Furthermore, results show that the method is robust towards various cross-validation schemes (the number of segments and how they are chosen).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.