Abstract

In this article, we consider the problem of variable selection in linear regression when multicollinearity is present in the data. It is well known that in the presence of multicollinearity, performance of least square (LS) estimator of regression parameters is not satisfactory. Consequently, subset selection methods, such as Mallow's Cp, which are based on LS estimates lead to selection of inadequate subsets. To overcome the problem of multicollinearity in subset selection, a new subset selection algorithm based on the ridge estimator is proposed. It is shown that the new algorithm is a better alternative to Mallow's Cp when the data exhibit multicollinearity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.