Abstract

In the applications of finite mixture of regression (FMR) models, often many covariates are used, and their contributions to the response variable vary from one component to another of the mixture model. This creates a complex variable selection problem. Existing methods, such as the Akaike information criterion and the Bayes information criterion, are computationally expensive as the number of covariates and components in the mixture model increases. In this article we introduce a penalized likelihood approach for variable selection in FMR models. The new method introduces penalties that depend on the size of the regression coefficients and the mixture structure. The new method is shown to be consistent for variable selection. A data-adaptive method for selecting tuning parameters and an EM algorithm for efficient numerical computations are developed. Simulations show that the method performs very well and requires much less computing power than existing methods. The new method is illustrated by analyzing two real data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.