Abstract
Abstract This paper examines variable selection among various factors related to motor vehicle fatality rates using a rich set of panel data. Four Bayesian methods are used. These include Extreme Bounds Analysis (EBA), Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), and Bayesian Additive Regression Trees (BART). The first three of these employ parameter estimation, the last, BART, involves no parameter estimation. Nonetheless, it also has implications for variable selection. The variables examined in the models include traditional motor vehicle and socioeconomic factors along with important policy-related variables. Policy recommendations are suggested with respect to cell phone use, modernization of the fleet, alcohol use, and diminishing suicidal behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.