Abstract

In this paper we discuss variable selection in a class of single-index models in which we do not assume the error term as additive. Following the idea of sufficient dimension reduction, we first propose a unified method to recover the direction, then reformulate it under the least square framework. Differing from many other existing results associated with nonparametric smoothing methods for density function, the bandwidth selection in our proposed kernel function essentially has no impact on its root-n consistency or asymptotic normality. To select the important predictors, we suggest using the adaptive lasso method which is computationally efficient. Under some regularity conditions, the adaptive lasso method enjoys the oracle property in a general class of single-index models. In addition, the resulting estimation is shown to be asymptotically normal, which enables us to construct a confidence region for the estimated direction. The asymptotic results are augmented through comprehensive simulations, and illustrated by an analysis of air pollution data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.