Abstract

The partially linear model (PLM) is a useful semiparametric extension of the linear model that has been well studied in the statistical literature. This paper proposes a variable selection procedure for the PLM with ultrahigh dimensional predictors. The proposed method is different from the existing penalized least squares procedure in that it relies on partial correlation between the partial residuals of the response and the predictors. We systematically study the theoretical properties of the proposed procedure and prove its model consistency property. We further establish the root-n convergence of the estimator of the regression coefficients and the asymptotic normality of the estimate of the baseline function. We conduct Monte Carlo simulations to examine the finite-sample performance of the proposed procedure and illustrate the proposed method with a real data example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.