Abstract
The present observational study investigated the application of multivariate cumulative sum (MCUSUM) control charts by including variables selected by principal component analysis and partial least squares (PLS) regression to identify sickness behavior in dairy cattle. Therefore, sensor information (24 variables) was collected from 480 milking cows on a German dairy farm between September 2018 and December 2019. These variables were gathered in potentially different scenarios on farm. In total, data from 749 animals were available for evaluation. Variables were chosen based on the information of 499 cows (62 healthy; 437 sick) with 93,598 observations. The available diagnoses were collected together to form 1,025 sickness events. Hence, the different numbers of selected variables were included into the MCUSUM control charts. The performance of the MCUSUM control charts was evaluated by a 10-fold cross validation; hence, 90% of the original data set (749 cows) represented the training data, and the remaining 10% was used to test the training results. On average, the 10 training data sets included 124,871 observations with 1,392 sickness events, and the 10 testing data sets included, on average, 13,704 observations with 153 sickness events. The MCUSUM generated from the variables selected by principal component analysis showed comparable results in training and testing in all scenarios; therefore, 70.0 to 97.4% of the sickness events were detected. The false-positive rates ranged from 8.5 to 29.6%, and thus they created at least 2.6 false-positive alerts per day in testing. The variables selected by the PLS regression approach showed comparable sickness detection rates (70.0-99.9%) as well as false-positive rates (8.2-62.8%) in most scenarios. The best performing scenario produced 2.5 false-positive alerts in testing. Summarizing, both approaches showed potential for practical implementation; however, the PLS variable selection approach showed fewer false positives. Therefore, the PLS regression approach could generate a more reliable sickness detection algorithm, if combined with MCUSUM control charts, and considered for practical implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.