Abstract
Many joint models of multivariate skew-normal longitudinal and survival data have been presented to accommodate for the non-normality of longitudinal outcomes in recent years. But existing work did not consider variable selection. This article investigates simultaneous parameter estimation and variable selection in joint modeling of longitudinal and survival data. The penalized splines technique is used to estimate unknown log baseline hazard function, the rectangle integral method is adopted to approximate conditional survival function. Monte Carlo expectation-maximization algorithm is developed to estimate model parameters. Based on local linear approximations to conditional expectation of likelihood function and penalty function, a one-step sparse estimation procedure is proposed to circumvent the computationally challenge in optimizing the penalized conditional expectation of likelihood function, which is utilized to select significant covariates and trajectory functions, and identify the departure from normality of longitudinal data. The conditional expectation of likelihood function-based Bayesian information criterion is developed to select the optimal tuning parameter. Simulation studies and a real example from the clinical trial are used to illustrate the proposed methodologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.