Abstract
Variable selection is needed and performed in almost every field and a large literature on it has been established, especially under the context of linear models or for complete data. Many authors have also investigated the variable selection problem for incomplete data such as right-censored failure time data. In this paper, we discuss variable selection when one faces bivariate interval-censored failure time data arising from a linear transformation model, for which it does not seem to exist an established procedure. For the problem, a penalized maximum likelihood approach is proposed and in particular, a novel Poisson-based EM algorithm is developed for the implementation. The oracle property of the proposed method is established, and the numerical studies suggest that the method works well for practical situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.