Abstract

Advancement in technology has generated abundant high-dimensional data that allows integration of multiple relevant studies. Due to their huge computational advantage, variable screening methods based on marginal correlation have become promising alternatives to the popular regularization methods for variable selection. However, all these screening methods are limited to single study so far. In this paper, we consider a general framework for variable screening with multiple related studies, and further propose a novel two-step screening procedure using a self-normalized estimator for high-dimensional regression analysis in this framework. Compared to the one-step procedure and rank-based sure independence screening (SIS) procedure, our procedure greatly reduces false negative errors while keeping a low false positive rate. Theoretically, we show that our procedure possesses the sure screening property with weaker assumptions on signal strengths and allows the number of features to grow at an exponential rate of the sample size. In addition, we relax the commonly used normality assumption and allow sub-Gaussian distributions. Simulations and a real transcriptomic application illustrate the advantage of our method as compared to the rank-based SIS method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.