Abstract

The main theoretical problem for the formation of a Keplerian disk around Be stars is how to supply angular momentum from the star to the disk, even more so since Be stars probably rotate somewhat sub-critically. For instance, nonradial pulsation may transport angular momentum to the stellar surface until (part of) this excess supports the disk formation/replenishment. The nearby Be star Achernar is presently building a new disk and offers an excellent opportunity to observe this process from relatively close-up. Spectra from various sources and epochs are scrutinized to identify the salient stellar parameters characterizing the disk life cycle as defined by H\alpha emission. Variable strength of the non-radial pulsation is confirmed, but does not affect the further results. For the first time it is demonstrated that the photospheric line width does vary in a Be star, by as much as \Delta v sin i \lesssim 35kms^{-1}. However, contrary to assumptions in which a photospheric spin-up accumulates during the diskless phase and then is released into the disk as it is fed, the apparent photospheric spin-up is positively correlated with the appearance of H\alpha line emission: The photospheric line widths and circumstellar emission increase together, and the apparent stellar rotation declines to the value at quiescence after the H\alpha line emission becomes undetectable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.