Abstract

Predictable restricted feeding schedules limit food availability to a single meal at the same time each day, lead to the induction and entrainment of circadian rhythms in food-anticipatory activity, and shift daily rhythms of clock gene expression in areas of the brain that are important in the regulation of motivational and emotional state. In contrast, when food is delivered under a variable restricted feeding (VRF) schedule, at a new and unpredictable mealtime each day, circadian rhythms in food-anticipatory activity fail to develop. Here, we study the effects of VRF on the daily rhythm of plasma corticosterone and of clock gene expression in the limbic forebrain and dorsal striatum, of rats provided a 2-h access to a complete meal replacement (Ensure Plus) at an unpredictable time each day. VRF schedules varied the mealtimes within the 12h of light (daytime VRF), the 12h of dark (nighttime VRF), or across the 24h light-dark cycle (anytime VRF). Our results show that contrary to the synchronizing effects of predictable restricted feeding, VRF blunts the daily corticosterone rhythm and disrupts daily rhythms of PER2 expression in a region-specific and mealtime-dependent manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call