Abstract

This paper proposes a new variable regularized least-squares (VR-LS) algorithm by recursively constructing a weighting scalar of the regularized least-squares (LS) cost function. Since the recursive LS (RLS) algorithm provides the best performances by all of VR-LS algorithms, the design objective of the weighting scalar is chosen such that equivalent optimality is ensured between one-step-ahead cost functions of the RLS and of the VR-LS algorithm. The proposed VR-LS algorithm functions similarly as the RLS with uncorrelated inputs; however, this is not the case with colored (correlated) inputs. Therefore, a conventional filtering technique is applied to both on the inputs and on the desired signals so as to obtain whitened inputs. This enables the proposed algorithm handle the case of correlated inputs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.