Abstract

Ordinary Petri nets often do not have sufficient power to represent and handle approximate and uncertain information. Fuzzy Petri nets are defined in this paper using three types of fuzzy variables: local fuzzy variables, fuzzy marking variables, and global fuzzy variables. These three types of variables are used to model uncertainty based on different aspects of fuzzy information. Several basic types of fuzzy Petri nets are analyzed, and the necessary and/or sufficient conditions of boundedness, liveness, and reversibility are given. An example of modeling sensory transitions in a robotic system is discussed to illustrate reasoning about input local fuzzy variables to obtain mutually exclusive tokens in the output places.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.