Abstract
ZnO and Y-doped ZnO nanocrystalline films were separately fabricated on the glass substrates by sol-gel spin-coating method. X-ray diffraction patterns of the films show the same wurtzite hexagonal structure and (0 0 2) preferential orientation. Scanning electron microscope images show that grain size and thickness of the nanocrystalline films decrease with increasing doping concentration. The decrease of optical bandgap with the increase of Y doping is deduced from the transmittance spectra. Temperature-dependent resistivity reveals a semiconductor transport behavior for all ZnO and Y-doped ZnO nanocrystalline films. The resulting conductivity originates from the combination of thermal activation conduction and Mott variable-range hopping (VRH) conduction. In the high-temperature range, the temperature-dependent resistivity can be described by the Arrhenius equation, σ (T) = σ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> exp[ -(E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">a</sub> /kT)], which shows the thermal activation conduction. The activation energy Ea increases from 0.47 meV for ZnO film to 0.83 meV for Zn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.98</sub> Y <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.02</sub> O film. On the contrary, in the low-temperature range, the temperature-dependent resistivity can be fitted well by the relationship, σ(T) = σ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">h 0</sub> exp[-(T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> /T) <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1/4</sup> ], which indicates the behavior of Mott VRH. The results demonstrate that the crystallization and the corresponding carrier transport behavior of the ZnO and Y-doped ZnO nanocrystalline films are affected by Y doping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.