Abstract

Direct numerical simulations (DNS) of the thermally-driven flow of air inside differentially heated cavities (DHC) are presented. The variation of air properties is taken into account using the low-Mach approximation, to obtain solutions outside the limits of the Oberbeck–Boussinesq (OB) approximation. The effects of the cavity’s aspect-ratio A and large temperature differences ΔT were investigated over the range 1 ≤ A ≤ 8 and ΔT ≤ 720 K. The Rayleigh and Prandtl numbers were set at Ra=109 and Pr=0.7, considering a reference temperature of T0=600 K. Time-averaged and r.m.s. statistics of the temperature field along with other derived quantities are presented and discussed. It is found that the time-averaged temperature fields vary significantly between non-Oberbeck–Boussinesq (NOB) and OB cases for larger aspect-ratios. This is also true for the instantaneous temperature and temperature r.m.s. fields which demonstrate significant qualitative differences. In addition, as the temperature difference increases and the property variations become more intense, the boundary layers at the vertical walls become turbulent at lower positions. The relocation of the laminar-turbulent transition point is found to be strongly dependent on the cavity’s aspect-ratio. An explanation of this phenomenon is given, based on the disruption of the vertical boundary layers by horizontal streams originating from the downstream part of the vertical walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.