Abstract
The production of transparent exopolymeric particles (TEP) by the coccolithophores, Emiliania huxleyi, Calcidiscus leptoporus and Syracosphaera pulchra was investigated in batch cultures. The abundance, size spectra and carbon content of TEP were examined during the exponential growth phase of both haploid and diploid life stages grown under ambient (400 atm) and elevated (760 atm) CO2 partial pressure (pCO(2)) conditions. Results showed species- and life stage-specific differences in TEP production rate (day(1)) derived from abundance and carbon content of TEP. At 400 atm, TEP production rate was the highest in the diploid stage of S. pulchra and E. huxleyi, while TEP carbon content per cell was the highest in the diploid stage of C. leptoporus. At 760 atm, TEP production rate increased in almost all species and was closely related to the cell growth rates (except in the diploid stage of C. leptoporus), while the slope values of the regression lines between TEP size distribution and concentration decreased. This means that the contribution of smaller size TEP was relatively more important than larger TEP in the high pCO(2) treatment. Elevated pCO(2) is potentially able to alter TEP size distribution. TEP-C content cell(1) generally decreased with increasing pCO(2). TEP-C accounted for 124 of the cell particulate organic carbon production and was inversely related to increasing pCO(2). TEP production by C. leptoporus and S. pulchra has not previously been documented. The amount of organic carbon released as TEP by these coccolithophores is comparable to and may even exceed TEP production by some diatoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Plankton Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.