Abstract

Growth during the early marine critical period is positively associated with survival and recruitment for Pacific salmonOncorhynchusspp., so it is important to understand how certain foraging strategies may bolster growth in estuarine and marine environments. To elucidate how spatiotemporal and demographic differences in diet contribute to growth rate variability, we analyzed stomach contents in tandem with morphometric and hormonal indices of growth for subyearling Chinook salmonO. tshawytschacaptured in Puget Sound, Washington, USA. Regional dietary patterns indicated that fish caught in northern Puget Sound ate insects in the estuarine and nearshore habitats, followed by decapod larvae, euphausiids, or forage fish in the offshore zone. In southern Puget Sound, fish ate insects in the estuary but were more likely to eat mysids and other crustaceans in the nearshore zone. In the marine habitats adjacent to the San Juan Islands, subyearlings ate forage fish, and their stomachs were as much as 1.4 to 3 times fuller than salmon captured in other regions. Scale-derived growth rates and insulin-like growth factor-1 levels showed distinct growth advantages for San Juan Islands fish which were strongly associated with the early adoption of piscivory. However, consumption of larger crustaceans such as mysids and euphausiids was also associated with greater relative growth regardless of where individuals were captured. These findings highlight how spatiotemporal differences in prey quantity, prey profitability, and individual foraging strategies result in variable growth rates among salmon populations. Specifically, they emphasize the role of piscivory in promoting early marine growth for out-migrating Chinook salmon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call