Abstract

This chapter presents the design and analysis of variable-precision, interval arithmetic processors. The processors give the user the ability to specify the precision of the computation, determine the accuracy of the results, and recompute inaccurate results with higher precision. The processors support a wide variety of arithmetic operations on variable-precision floating point numbers and intervals. Efficient hardware algorithms and specially designed functional units increase the speed, accuracy, and reliability of numerical computations. Area and delay estimates indicate that the processors can be implemented with areas and cycle times that are comparable to conventional IEEE double-precision floating point coprocessors. Execution time estimates indicate that the processors are two to three orders of magnitude faster than a conventional software package for variable-precision, interval arithmetic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.