Abstract

ABSTRACTIn this experiment, the photosynthetic acclimation of successive needle cohorts of Scots pine were studied during 3 years of growth at elevated CO2 and temperature. Naturally regenerated Scots pine (Pinus sylvestris L.) trees were subjected to elevated CO2 concentration (+CO2, 700 p.p.m), elevated temperature (+T, ambient +2 to +6 °C) and to a combination of elevated CO2 and temperature (+CO2 + T) in closed‐top chambers, starting in August 1996. Trees growing in chambers with ambient CO2 and ambient temperature served as controls (AmbC). Elevated CO2 influenced the dark reactions more than the light reactions of photosynthesis, as in the 1996 and 1997 cohorts the carboxylation capacity of Rubisco was reduced in the first and second year of exposure, but there was no consistent change in chlorophyll fluorescence. Net photosynthesis measured at growth concentration of CO2 was higher at +CO2 than at AmbC on only one measuring occasion, was generally lower at +T and was not changed at +CO2 + T. However, trees grown at +T tended to invest more nitrogen (N) in Rubisco, as Rubisco/chlorophyll and the proportion of the total needle N bound to Rubisco occasionally increased. The interaction of +CO2 and +T on Rubisco was mostly negative; consequently, in the second and third year of the experiment the carboxylation capacity decreased at +CO2 + T. In the 1996, 1997 and 1998 cohorts, the structural N concentration of needles was lower at +CO2 than at AmbC. Elevated CO2 and elevated temperature generally had a positive interaction on N concentration; consequently, N concentration in needles decreased less at +CO2 + T than at +CO2. At +CO2 + T, the acclimation response of needles varied between years and was more pronounced in the 1‐year‐old needles of the 1997 cohort than in those of the 1998 cohort. Thus, acclimation was not always greater in 1‐year‐old needles than in current‐year needles. In the +CO2 + T treatment, elevated temperature had a greater effect on acclimation of needles than elevated CO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.