Abstract
Continuously variable true-time optical delay lines are typically subject to a constraint of the bandwidth-delay product, limiting their use in several applications. In this Letter, we propose an integrated topology that breaks the bandwidth-delay product limit. The device is based on multiple Mach-Zehnder Interferometers (MZIs) arranged in parallel, providing easier control and a larger bandwidth compared to ring resonator-based solutions. The functionality of this architecture is demonstrated with a 4-stage delay line by performing measurements in both the time and frequency domains. The delay line introduces a delay of 90 ps over a bandwidth of more than 22 GHz with a negligible group delay distortion, operates on a wavelength range of about 60 nm, and is scalable to a higher number of MZI stages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.