Abstract

We consider a two-stage stochastic programming problem with a bilinear loss function and a quantile criterion. The problem is reduced to a single-stage stochastic programming problem with a quantile criterion. We use the method of sample approximations. The resulting approximating problem is considered as a stochastic programming problem with a discrete distribution of random parameters. We check convergence conditions for the sequence of solutions of approximating problems. Using the confidence method, the problem is reduced to a combinatorial optimization problem where the confidence set represents an optimization strategy. To search for the optimal confidence set, we adapt the variable neighborhood search method. To solve the problem, we develop a hybrid algorithm based on the method of sample approximations, the confidence method, variable neighborhood search.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.