Abstract

A clonal, neuronally-differentiating cell line, RN33B, was previously developed by retroviral infection of neural tissue derived from embryonic Sprague-Dawley raphé nuclei with a retrovirus encoding the temperature-sensitive allele of SV40 large T-antigen. In the present study, RN33B cells were transplanted into two target areas of the raphé nuclei, the spinal cord and hippocampal formation, of adult allogeneic hosts. Prior to transplantation, RN33B cells were infected in vitro with a retroviral vector carrying the Escherichia coli lacZ reporter gene and were visualized in vivo using a βgalactosidase immunohistochemical technique. RN33B cells were seen throughout the spinal cord and hippocampal formation of the adult hosts at 15 days post-transplantation. T-antigen-immunoreactive nuclei were detected where RN33B cells were observed, but in much greater numbers than β-galactosidase-immunoreactive cells. Bipolar RN33B cells were found in the spinal cord grey matter. RN33B cells with multipolar morphologies were visualized in the hippocampal and subicular pyramidal cell layers, and also in the dentate gyrus granule cell and polymorph layers, while bipolar RN33B cells were seen in the remainder of the hippocampal formation. The results suggest that immortalized neural cell lines of CNS origin can differentiate in the adult CNS with their ultimate morphology being determined by local tissue signals. We speculate that endogenous neutrophins may significantly influence RN33B cell differentiation in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.