Abstract

Due to the different divergence angles in two perpendicular directions and the presence of astigmatism in edge-emitting semiconductor lasers, the communication distance and efficiency of underwater communication are seriously affected. Therefore, based on the fact that the semiconductor laser beam belongs to Gaussian beam, satisfying Gaussian characteristics and collimating and expanding characteristics, a system composed of fast-axis collimation mirror and variable magnification beam expander is designed. Simulation is performed, and the final divergence angle is calculated. Experimental results show that the divergence angles of the fast axis and the slow axis have been compressed from 49 and 9, respectively, to 0.315 mrad and 0.180 mrad. Simulation demonstrates that the system can achieve propagation over a distance of 100m underwater and solve the alignment difficulty of APT. The designed structure is compact, easy for processing and adjustment, with high practical value, which helps to solve the problems of optical energy loss and low coupling efficiency in underwater long-distance communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call