Abstract

A class of lapped transforms for image coding, which are characterized by variable-length synthesis filters, is introduced. In this class, the synthesis filter bank (FB) is first defined with an arbitrary combination of finite impulse response synthesis filters of perfect reconstruction FBs. An analysis FB is then obtained using direct matrix inversion or iterative implementation of Neumann series expansion. Moreover, to improve compression, we introduce a unitary transform that follows the analysis FB. This class enables a greater freedom of design than previously presented variable-length lapped transforms. We illustrate several design examples and present experimental results for image coding, which indicate that the proposed transforms are promising and comparable with conventional subband transforms including wavelets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.