Abstract

This paper presents a variable-length decision-feedback scheme that uses tail-biting convolutional codes and the tail-biting Reliability-Output Viterbi Algoritm (ROVA). Comparing with recent results in finite-blocklength information theory, simulation results for both the BSC and the AWGN channel show that the decision-feedback scheme using ROVA can surpass the random-coding lower bound on throughput for feedback codes at average blocklengths less than 100 symbols. This paper explores ROVA-based decision feedback both with decoding after every symbol and with decoding limited to a small number of increments. The performance of the reliability-based stopping rule with the ROVA is compared to retransmission decisions based on CRCs. For short blocklengths where the latency overhead of the CRC bits is severe, the ROVA-based approach delivers superior rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.