Abstract

An infinite homogeneous tree is a special type of graph that has a completely symmetrical structure in all directions. For an infinite homogeneous tree T=(V,E) with the natural distance d defined on graphs and a weighted measure μ of exponential growth, the authors introduce the variable Lebesgue space Lp(·)(μ) over (V,d,μ) and investigate it under the global Hölder continuity condition for p(·). As an application, the strong and weak boundedness of the maximal operator relevant to admissible trapezoids on Lp(·)(μ) is obtained, and an unbounded example is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.