Abstract

AbstractEfficiently accessing multidimensional data is a challenge for building modern database applications that involve many folds of data such as temporal, spatial, data warehousing, bio-informatics, etc. This problem stems from the fact that multidimensional data have no given order that preserves proximity. The majority of the existing solutions to this problem cannot be easily integrated into the current relational database systems since they require modifications to the kernel. A prominent class of methods that can use existing access structures are ‘space filling curves’. In this study, we describe a method that is also based on the space filling curve approach, but in contrast to earlier methods, it connects regions of various sizes rather than points in multidimensional space. Our approach allows an efficient transformation of interval queries into regions of data that results in significant improvements when accessing the data. A detailed empirical study demonstrates that the proposed method outperforms the best available off-the-shelf methods for accessing multidimensional data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.