Abstract

This paper demonstrates a phase compensation technique using varactors for variable-gain phase shifters (VGPSs). The VGPS consists of an I/Q generator and I/Q variable gain amplifiers (I/Q VGAs). I/Q VGAs based on common-emitter stages are enabled to control the gain by adjusting the collector current of the transistor. However, the phase control performance degenerates because the input capacitance varies with the collector current. The proposed phase compensation technique reduces the variation in the insertion phase of the I/Q VGA by adjusting the voltage of the varactor provided at its input and maintaining the input capacitance constant in any gain state. As a result, the VGPS can provide a low phase and amplitude error under phase control. A Ka-band VGPS with the proposed phase compensation technique, fabricated in a 130-nm SiGe BiCMOS process, demonstrates a 0.73° and 0.06 dB improvement in the RMS phase and amplitude error compared with the case without the compensation technique. The VGPS achieves measured RMS amplitude and phase errors of less than 0.19 dB and 0.75°, respectively, in an amplitude control range of more than 20 dB with a frequency range of 28 to 32 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.