Abstract

This chapter studies the operation and characteristics of three-phase synchronous machines connected to three-phase inverters, static power converters capable of adjusting the stator voltages by means of changing the width of the voltage pulses supplied to the stator terminals. The average voltage of the pulse train is adjusted to suit the machine needs. Variable speed operation of synchronous machine is achieved with variable frequency and variable amplitude of stator voltages. This chapter introduces and explains some basic torque and speed control principles. The need of controlling the stator currents is discussed and explained. Fundamental principles of stator current control are introduced, relying on PWM-controlled three-phase inverter as the voltage actuator. Field-weakening performance of inverter-supplied synchronous machines with buried magnets and surface-mounted magnets is analyzed and explained. The limits of constant power operation in field-weakening mode are determined, explained, and expressed in terms of the stator self-inductance. Based upon the study of operating limits of the machine and operating limits of associated three-phase inverter, steady-state operating area and transient operating area are derived in T−Ω plane and studied for inverter-supplied synchronous machines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.