Abstract

The distinct distribution and abundance of C-to-U and U-to-C RNA editing among land plants suggest that these two processes originated and evolve independently, but the paucity of information from several key lineages limits our understanding of their evolution. To examine the evolutionary diversity of RNA editing among ferns, we sequenced the plastid transcriptomes from two early diverging species, Ophioglossum californicum and Psilotum nudum. Using a relaxed automated approach to minimize false negatives combined with manual inspection to eliminate false positives, we identified 297 C-to-U and three U-to-C edit sites in the O. californicum plastid transcriptome but only 27 C-to-U and no U-to-C edit sites in the P. nudum plastid transcriptome. A broader comparison of editing content with the leptosporangiate fern Adiantum capillus-veneris and the hornwort Anthoceros formosae uncovered large variance in the abundance of plastid editing, indicating that the frequency and type of RNA editing is highly labile in ferns. Edit sites that increase protein conservation among species are more abundant and more efficiently edited than silent and non-conservative sites, suggesting that selection maintains functionally important editing. The absence of U-to-C editing from P. nudum plastid transcripts and other vascular plants demonstrates that U-to-C editing loss is a recurrent phenomenon in vascular plant evolution.

Highlights

  • In land plants (Embryophyta), plastid and mitochondrial transcripts undergo a type of posttranscriptional processing called RNA editing, which converts specific cytidines to uridines (C-to-U) or uridines to cytidines (U-to-C) through undefined mechanisms

  • An automated approach combined with manual inspection for edit site detection To detect edit sites in the O. californicum and P. nudum plastid transcriptomes, we generated an automated bioinformatics pipeline that compared transcript reads to the plastid genome sequences that were previously sequenced from the same plants [38]

  • Our manual corrections eliminated all of the mismatches that could not be caused by C-to-U or U-to-C RNA editing, and eliminated a small number of editing-type mismatches (S2 Table)

Read more

Summary

Introduction

In land plants (Embryophyta), plastid and mitochondrial transcripts undergo a type of posttranscriptional processing called RNA editing, which converts specific cytidines to uridines (C-to-U) or uridines to cytidines (U-to-C) through undefined mechanisms (reviewed in [1,2,3]). Surveys of organellar RNA editing have revealed extensive variability in the frequency and type of editing among and within the major land plant groups, which includes seed plants (Spermatophyta), ferns sensu lato(Monilophyta), lycophytes (Lycopodiophyta), hornworts (Anthocerotophyta), mosses (Bryophyta sensu stricto), and liverworts (Marchantiophyta). Variable Frequency of Plastid RNA Editing in Ferns roles of these authors are articulated in the ‘author contributions’ section

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call