Abstract

In mammals pituitary growth hormone (GH) shows a slow basal rate of evolution (0.22 +/- 0.03 x 10(-9) substitutions/amino acid site/year) which appears to have increased by at least 25-50-fold on two occasions, during the evolution of primates (to at least 10.8 +/- 1.3 x 10(-9) substitutions/amino acid site/year) and artiodactyl ruminants (to at least 5.6 +/- 1.3 x 10(-9) substitutions/amino acid site/year). That these rate increases are real, and not due to inadvertent comparison of nonorthologous genes, was established by showing that features of the GH gene sequences that are not expressed as mature hormone do not show corresponding changes in evolutionary rate. Thus, analysis of non-synonymous substitutions in the coding sequence for the mature protein confirmed the rate increases seen in the primate and ruminant GHs, but analysis of nonsynonymous substitutions in the signal peptide sequence, synonymous substitutions in the coding sequence for signal peptide or mature protein, and 5' and 3' untranslated sequences showed no statistically significant changes in evolutionary rate. Evidence that the increases in evolutionary rate are probably due to positive selection is provided by the observation that in the cases of both ruminant and primate GHs the periods of rapid evolution were followed by a return to a slow rate similar to the basal rate seen in other mammalian GHs.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call