Abstract

Smart radiative coating on yttria stabilized zirconia (YSZ) substrate was prepared by the sol-gel LaSrxMnO3 (x = 0.125, 0.175 and 0.2) nanoparticles and the binder composed of terpineol and ethyl cellulose. The crystallized structure, grain size, chemical compositions, magnetization and the surface morphology were characterized. The thermal radiative properties of coating in the infrared range was evaluated from infrared reflectance spectra at various temperatures. A single perovskite structure is detected in sol-gel nanoparticles with size 200 nm. Magnetization measurement reveals that room temperature phase transition samples can be obtained by appropriate Sr substitution. The influence of surface conditions and sintering temperature on the emittance of coating was observed. For rough coatings with root-mean-square roughness 640 nm (x = 0.125) and 800 nm (x = 0.175) , its emittance increment is 0.24 and 0.26 in in the temperature range of 173–373 K. Increasing sintering temperature to 1673 K, coating emittance variation improves to 0.3 and 0.302 respectively. After mechanical polishing treatment, the emittance increment of coatings are enhanced to 0.31 and 0.3, respectively. The results suggested that the emittance variation can be enhanced by reducing surface roughness and increasing sintering temperature of coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call