Abstract

AbstractThe paper reports new experimental results describing properties and microstructure of nanocrystalline metals. Nano- and sub-micron aluminium has been produced by hydrostatic extrusion at ambient tempearture. The structures have been quantified in terms of size of grains and misorientation of the grain boundaries. Different average size of grains, variable normalized width of grain size distribution and changing grain boundary misorientation distribution functions have been revealed depending on processing parameters. The results of the tensile tests showed that the average grain size, grain size distribution and the distribution function of misorientation angles influence the flow stress of obtained nano-metals. In order to explain the observed difference in the properties of nano- and micro-sized aluminium alloys, a Finite Element Method models have been developed, which assumes that both grain boundaries and grain interiors may accommodated elastic and non-linear plastic deformation. These models assumed true geometry of grains (which differed in size and shape). Also, variable mechanical properties of grain boundaries have been taken into account (elastic modulus, yield strength and work hardening rate). The results of modelling explain in a semi-quantitative way macroscopic deformation of nano-crystalline aggregates. In particular, they illustrate the importance of the interplay between properties of grain boundaries and grain interiors in elastic and plastic regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.