Abstract

1. Temperature dependence of egg development of Dinocras cephalotes (Curtis) (three German and one Norwegian population) and Slovenian D. megacephala (Klapálek) was studied under a constant 14 : 10 light : dark photoperiod and constant temperature ranges of 4–24 °C and 4–18 °C, respectively. D. cephalotes was also incubated under seasonal field conditions; natural daylength and fluctuating temperatures had no modifying effect.2. Both species have very similar lower threshold temperatures (4 and 3.5 °C, respectively), thermal demand for development (c. 600 degree days) and high dependence of mean incubation period on temperature (exponents of regressions near 1.5). Present data on D. cephalotes agree with the literature on British and Norwegian material of the same species.3. Development occurs only at cue temperatures above the lower threshold. Cue temperatures range from 6 °C (some D. megacephala) to 14 °C (some D. cephalotes) and vary strongly within and between egg masses of D. cephalotes. Variation is not random, but seems to be genetically determined.4. The variable temperature response renders study of effects of particular experimental regimes, and comparisons between local populations, difficult.5. A latitudinal gradient in cue temperatures for development from 6 °C at c. 46 °N to 12 or even 14 °C at c. 61 °N seems to reflect reduced diversity at high latitudes.6. Average success of spontaneous hatching exceeded 90% between 12 and 20 °C, but declined towards higher and lower temperatures.7. Unhatched eggs were not dead but in parapause; development at other, higher or lower, temperatures was induced. Spontaneous plus induced hatching success approached 90%. Developing eggs rarely died; most dead eggs were apparently unfertilized.8. Dormant plecopteran eggs are proposed to form a seed bank in stream bed sediments. Highly successful development after up to 220 days of dormancy was ascertained in Dinocras, and survival for up to 3 years is reported for other Perloidea.9. Only systellognathan egg morphology provides options for long dormancy; the other plecopteran superfamilies, notably Nemouroidea, follow different strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.