Abstract

Doppler echocardiographic methods for measuring volumetric flow through the aortic, pulmonary and mitral valves provide the cardiologist with several potentially interchangeable noninvasive methods for determining cardiac output. In addition, comparison of flow differences through individual valves offers the potential to quantitate shunt flow and regurgitant volumes. To date, however, no study has compared the relative accuracies of each of these flow measurements in a controlled experimental setting. Therefore, in this study, Doppler echocardiography was used to measure aortic, pulmonary and mitral valve flows in seven open chest dogs on right atrial bypass where forward cardiac output was precisely controlled with a roller pump. Correlations with roller pump output were better for Doppler measurements of aortic (r = 0.98, SD = 0.3) and mitral (r = 0.97, SD = 0.3) than for pulmonary (r = 0.93, SD = 0.5) valve flow. Interobserver reproducibility was also better for aortic (r = 0.94) and mitral (r = 0.97) than for pulmonary (r = 0.88) valve flow measurements. All valves showed flow-related increases in cross-sectional area, but the slope of this response was variable: 0.05, 0.16 and 0.21 for the aortic, the pulmonary and the mitral valve, respectively. Increased forward flow through the aortic valve, therefore, was manifested primarily by an increase in velocity, whereas increasing flow through the pulmonary and mitral valves produced more significant area changes with correspondingly smaller increases in the velocity component. Recalculation of Doppler-determined outputs, assuming a fixed valve area for the entire range of flows, resulted in a decreased correlation with roller pump output. Both velocity and valve area should be measured at each flow rate for greatest accuracy in volumetric flow calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.