Abstract

Biological control (the importation of enemies from an invader's native range) is often considered our best chance of controlling the most widespread invaders. Ideally, the agent reduces invader abundance to some acceptably low level, and the two coexist at low density with the agent providing continuous control over the long-term. But the outcome may be complicated when the agent is attacked by native predators and parasites. We used a spatially explicit, discrete-time, individual-based, coupled plant-seed predator-parasitoid model to estimate the impact of the biocontrol agent Eustenopus villosus (a seed predator) on the invasive, annual weed Centaurea solstitialis, both with and without the generalist parasitoid Pyemotes tritici. We estimated the agent's ability to reduce plant density, spread rate, and population growth rate over 50 years. We used long-term demographic data from two sites in central California, USA, to parameterize the model and assess how populations in different climatic zones might respond differently to the agent and the parasitoid. We found that the biocontrol agent reduced plant density (relative to predictions for an uncontrolled invasion), but its impact on the invader's spread rate was modest and inconsistent. The agent had no long-term impact on population growth rate (lambda). Parasitism caused a trophic cascade, the strength of which varied between sites. At our coastal site, the parasitoid entirely eliminated the impact of the agent on the plant. At our Central Valley site, even when parasitized, the agent significantly reduced plant density and spread rate over several decades (although to a lesser degree than when it was not parasitized), but not invader lambda. Surprisingly, we also found that the length of time the invader was allowed to spread across the landscape prior to introducing the agent (5, 25, or 50 years) had little influence over its ability to control the weed in the long-term. This is encouraging news for land managers attempting to control invasive plants that have already established widespread, high-density populations. Unfortunately, our results also show that attack by the native generalist parasitoid had a larger influence over how effectively the agent reduced invader performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call